NetApp’

Oracle 9i for UNIX: Cloning Database
Using NetApp Filer Flexible Volumes in
NAS and SAN Environments

Sunny Ng, Network Appliance | November 2004 | TR-3355

Abstract

This document describes the cloning process of Oracle 9i™ databases using
Data ONTAP® flexible-volume clone feature and Oracle® backup/recovery
techniques. Cloning processes under both NFS and FCP environments are
considered. Procedures for validating the cloned data are also discussed.

TECHNICAL REPORT

'sa139)e1s JuswaSeuLw

ejep [8qO[3 puE SUONN|OS dFLI0}S PAOUBAPE

M sagud[[eyd [eoruyod) xojdwoo

JO9UI PUE PUB)SIOPUN SUOT)EZIULSIO

sdjoy ‘A3o[ouyo9) 9Fe10)s BIERp UI JOPEI|
Ansnpur pue 10auoid e ‘eouerjddy 1omioN

Table of Contents

AW =

8
9

Introduction
Requirements and Assumptions
Network and Storage Infrastructure
Creating a Production Database on a Filer in a NAS Environment
4.1 Creating Filer Aggregates and Flexible Volumes
4.2 Creating Production Database Components on Filer Volumes
4.3 Creating Database Objects and Data by TPCC and STB
Cloning Database in a NAS Environment
5.1 Full Database Clone with a Hot Backup
5.2 Partial Database Clone with a Hot Backup
5.3 Full Database Clone with a Cold Backup
5.4 Partial Database Clone with a Cold Backup
5.5 Recommendations for Cloning
Cloning Database in a SAN Environment Using RMAN
6.1 Creating Aggregates, Flexible Volumes, and LUNs
6.2 Creating Production Databases on Filer LUNs \,Q
6.3 Procedures of Cloning Database in an FCP En@@hment
Verifications of the Cloned Database O ‘g
7.1 STB and TPCC Verlﬁcatlons
7.2 Verifications with NetApp V\Q_ cheep aggr wafliron and Oracle
db_verify

Conclusions C) \Q
Caveats A
o>

10 Technical References A?“ @

QS;Z\ @
v

1. Introduction

Database administrators and developers clone databases for various reasons, such as
updating test or development environments from production or switching the
production database to the clone in case of an emergency. Cloning databases usually
involves both backup and recovery procedures. The clone can exist on the same host
as the production database or on a different host.

This paper discusses the cloning of Oracle9i databases using the NetApp Data
ONTAP flexible-volume clone feature under both NAS and SAN environments.
Specifically, this paper covers the following topics:

(a) Creating Oracle9i a production database and its components in NetApp filer
flexible volumes

(b) Performing full and partial clones of the production database in both NAS and
SAN environments using the NetApp flexible-volume clone feature, Oracle User-
Managed and RMAN recovery techniques

(c) Methods to validate the cloned database 6(0'

It is important to note that the cloned database is cre@fg locally in the same filer

aggregate that accommodates the orlgm@ database. Remote cloning such
as using NetApp SnapMirror” techno is I@t vered here. Interested readers can
refer to Ref. [1] for the related t0p1

For the purpose of this pap %é(o er to the cloned database, production to
the source or productlon se, Oracle to Oracle9i database products. The
terms source and prod:@ @éd interchangeably.

W ¥
C)O

2. Requirements and Assumptions

It is assumed that the reader is familiar with the administrative commands and
operations of the NetApp filer, Data ONTAP, Oracle9i, and the UNIX" operating
system. It is further assumed that the reader has basic knowledge of the NAS and
SAN technologies.

The NetApp filer must be loaded with the Data ONTAP version that supports the
flexible-volume clone feature. At the time of writing, the version is “Anchorsteam”.
The filer must also have NFS and FCP capabilities. The Oracle database server is
assumed to have been installed on a UNIX machine and to be ready for creating
database objects.

In the database cloning process, some of the database objects and transactions are
created using the Benchmark Factory TPCC tool [3]. However, the reader is not
required to know the TPCC tool since this paper focuses on th@:loning procedures
and not on how data are created. (5\,

The sample scripts and commands in this paper assun‘étﬁe following:
4

The name of the filer is “filer”, QA \}‘
The name of the Oracle se @“ora@g’.
The name of the production‘wsta c&is “DB1”.

The name of the clone { nce@. BI1CLONE”.

The names of filer gate@‘e “aggrl”, “aggr2”, and “aggr3”.

The filer flexible\w0 ume&% store the production database are “dbuserdata”,

“sysdata”, “logN./“log2%*and “archivedlog”.

The filer ﬂ%e éﬁﬁnes to store the clone are “userdataClone”,
“sysdataClone”~19g1Clone”, “log2Clone”, “archClone”.

The mount pogt)of the production is “/ export/ honme/ DB1”.

The mount point of the clone is “/ expor t/ hone/ dblcl one”.

The tests used an Oracle 9.2.0.1.0 database server that ran on Sun Solaris™ &. The
filer was an F880 loaded with the Data ONTAP - Anchorsteam release.

3. Network and Storage Infrastructure

The current database cloning tests were conducted in the System Test Simcity
Customer Simulation Lab facility [2]. Figure 1 shows a schematic of the lab facility.
The Simcity lab is equipped with a Gigabit Ethernet network, multiple SAN channels,
various models of NetApp filers and NearStore® platforms, a WAN simulator, a
server farm, and a client farm, The server farm comprises mostly non NetApp
applications such as Oracle 9i Server, Clear Case™, Microsoft” Exchange™, NIS,
DNS, and Microsoft Domain Controller®, etc. The client farm includes more than a
hundred of UNIX and Windows® hosts; NetApp applications such as DataFabric®
Manager and Snap products; and non NetApp applications like Benchmark Factory™
[3], ORASIM® (Oracle Server simulator) [9], and SQLSIM® (a Microsoft SQL
Server simulator). The Simcity lab configuration is designed to be flexible in order to
simulate various customer network and storage infrastructure configurations
accurately.

NetApp has shipped thousands of multiprotocol filers to cu ers in different
industries. Customers have benefited from the filer perfo ce, reliability, and
stability for their storage operations. Because these custeiner environments are
diverse, it is crucial to have a lab facility th%can provide flexible configurations to
simulate customer environments for prch

C) A{)
@ o
a

Q.
s c)°°

Server Farm
Oracle9i

Clear Case
MSExchange
DNS, NIS

Domain Controller
Web Server

Virus Scanner

fcp

Ethernet

Client Farm
Solaris Hosts
Linux Hosts
Windows Hosts
SnapManager®
SnapDrive™
DataFabric Manager
VFM™

Secure Admin
ORASIM

SQLSIM
Benchmark Factory

<
«

»
>

NFS,
iSCSi,
CIFS

A

A 4

) Simulated Remote Site
.| Fiber
| Switch |le—| 1
Filer RO00 %
A A
LAN |
Switch | Tape
A
Snap
Mirror
WAN
Simulator
A
LAN | I
Switch | g
Filer
Cluster
Fiber o
Switch g
Local Site
SnapVault

Figure 1) A Schematic of Simcity Customer Simulation Lab.

4. Creating a Production Database on a Filer in a NAS Environment

This section discusses the creation of a production database and its components and
of the filer aggregates and flexible volumes that store that database. The tools that
generate database data and objects such as tables, indexes, and procedures are also
described here.

4.1 Creating Filer Aggregates and Flexible Volumes

Before creating the database, we first create aggregates and flexible volumes on the
filer. An aggregate is a RAID-level physical pool of storage. A flexible volume is a
logical storage container inside an aggregate. A flexible volume can be as small as a
few megabytes and as large as the aggregate. There are many advantages to storing
database components in flexible volumes. To name a few, (a) a distinct volume can
be created for a distinct dataset; (b) the volume size can easily be tailored to meet the
component space requirement; and (c) flexible backup of an ected database

component can be made. 6
4

In the tests, two aggregates—"‘aggrl” and - ggr —\Ygre created. The aggregate
“aggrl” was assigned 10 disks and “ag . Distinct volumes were then
created in the aggregates for distinct éz;@ ¢ onhne redo logfiles were
rotéépitra

multiplexed in different aggregates nsactions from media failure.

Spemﬁcally, the volume * dbus% reated for storing user tablespaces
datafiles; “archivedlog” for ed logfiles; “sysdata” for system, undo, and
temporary tablespaces d«t?\d\ﬂ: ogl” and “log2” for online redo logfiles.

C)Q

filer> aggr create aggrl 10

filer> aggr create aggr2 12

filer> vol create dbuserdata aggr2 200g
filer> vol create sysdata aggrl 20g
filer> vol create logl aggrl 20g

filer> vol create log2 aggr2 20g

filer> vol create archivedlog aggr2 100g

Now, mount the filer volumes onto the Oracle server “oracle9”. Note that the NFS
mount uses TCP. In general, UDP has less protocol overhead and consequently better
performance, provided that there is a reliable and dedicated connection between the
filer and the Oracle server. However, the test environment lacks such a dedicated
connection and TCP is therefore used.

oracle9# mount -o hard, intr,suid,vers=3,proto=tcp,llock, forcedirectio,
rsize=32768,wsize=32768, filer:/vol/dbuserdata /export/home/DBl/user data
oracle9# mount -o hard, intr,suid,vers=3,proto=tcp,llock, forcedirectio,
rsize=32768,wsize=32768,filer:/vol/dbsysdata /export/home/DBl/sys data
oracle9# mount -o hard, intr,suid,vers=3,proto=tcp,llock, forcedirectio,
rsize=32768,wsize=32768, filer:/vol/logl /export/home/DBl/log 1

oracle9# mount -o hard, intr,suid,vers=3,proto=tcp,llock, forcedirectio,
rsize=32768,wsize=32768, filer:/vol/log2 /export/home/DBl/log 2

oracle9# mount -o hard, intr,suid,vers=3,proto=tcp,llock, forcedirectio,
rsize=32768,wsize=32768, filer:/vol/archivedlog /export/home/DBl/archlog

Add the following entries to the file / et ¢/ vf st ab on the host “oracle9” for an
automatic remount of the filer volumes at the host reboot.

filer:/vol/dbuserdata - /export/home/DBl/user data nfs -
Yes hard, intr, suid, vers=3,proto=tcp, rsize=32678,wsize=32678,
llock, forcedirectio

filer:/vol/dbsysdata - /export/home/DBl/sys data nfs -

yes hard, intr,suid, vers=3,proto=tcp,rsize=32678,wsize=32678,
llock, forcedirectio

filer:/vol/logl - /export/home/DBl/log 1 nfs -

yes hard, intr,suid, vers=3,proto=tcp,rsize=32678,wsize=32678,
llock, forcedirectio

filer:/vol/log2 - /export/home/DBl/log 2 nfs -

yes hard, intr,suid, vers=3,proto=tcp,rsize=32678,wsize=32678,
llock, forcedirectio

filer:/vol/archivedlog - /export/home/DBl/archlog nfs - yes
hard, intr, suid, vers=3, proto=tcp,rsize=32678,wsize=32678,
llock, forcedirectio

x<Q
o Filer Volumes
S\/
We are now ready to create the production.<abas %e Oracle home, which is the
recommended place for the filer volu @, 10]. name this database “DB1” and
create it using the following SQL scti) he database can also be created by using

DBCA tool. QO
AV @

4.2 Creating Production Database Components

connect / as SYSDBA

set echo on

spool /export/home/OraHomel/assistants/dbca/logs/CreateDB.log
startup nomount pfile="/export/home/OraHomel/admin/DBl/pfile/initDBl.ora";
CREATE DATABASE DBl

MAXINSTANCES 1

MAXLOGHISTORY 1

MAXLOGFILES 5

MAXLOGMEMBERS 3

MAXDATAFILES 100

DATAFILE '/export/home/DBl/sys data/system0l.dbf' SIZE 250M REUSE
AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL
DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE

' /export/home/DBl/sys_data/temp0l.dbf' SIZE 200M REUSE

UNDO TABLESPACE "UNDOTBS1" DATAFILE

' /export/home/DBl/sys_data/undotbs0l.dbf' SIZE 200M AUTOEXTEND ON
NEXT 5120K MAXSIZE UNLIMITED,

' /export/home/DBl/sys_data/undotbs02.dbf' SIZE 200M AUTOEXTEND ON
NEXT 5120K MAXSIZE UNLIMITED,

' /export/home/DB1l/sys data/undotabs03.dbf'SIZE 200M AUTOEXTEND ON
NEXT 5120K MAXSIZE UNLIMITED

CHARACTER SET WE8IS0O8859P1

NATIONAL CHARACTER SET AL16UTF16

LOGFILE

GROUP 1 ('/export/home/DBl/log 1l/redo0la.log',

' /export/home/DBl/log 2/redo0lb.log') SIZE 102400K,

GROUP 2 ('/export/home/DBl/log 1/redo02a.log',

' /export/home/DB1l/log 2/redo02b.log') SIZE 102400K,

GROUP 3 ('/export/home/DBl/log 1/redo03a.log',

' /export/home/DBl/log 2/redo03b.log') SIZE 102400K;

spool off

exit;

Additional tablespaces are then created and added to DB1. For instance, the
tablespace “USERS” is created and assigned 40GB of space for storing user data.
This is illustrated in the following SQL script.

connect / as SYSDBA
set echo on
spool /export/home/OraHomel/assistants/dbca/logs/CreateDBFiles.log
CREATE TABLESPACE "INDX" LOGGING DATAFILE
' /export/home/DBl/sys data/indx01.dbf' SIZE 25M REUSE
AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;
CREATE TABLESPACE "TOOLS" LOGGING DATAFILE
' /export/home/DBl/sys data/tools0l.dbf' SIZE 10M REUSE
AUTOEXTEND ON NEXT 320K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL SEGMENT
SPACE MANAGEMENT AUTO;
CREATE TABLESPACE "USERS" LOGGING DATAFILE

'/export/home/DBl/user data/users0l.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,

'/export/home/DBl/user data/users02.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,

' /export/home/DBl/user data/users03.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,

' /export/home/DBl/user data/users04.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,

' /export/home/DBl/user data/users05.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,

' /export/home/DBl/user data/users06.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,

' /export/home/DBl/user data/users07.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,

' /export/home/DBl/user data/users08.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,

' /export/home/DBl/user data/users09.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT1280K MAXSIZE UNLIMITED,

' /export/home/DBl/user data/usersl0.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL SEGMENT SPACE
MANAGEMENT AUTO;
CREATE TABLESPACE "XDB" LOGGING DATAFILE
'/export/home/DBl/sys_data/xdb0l.dbf' SIZE 20M REUSE AUTOEXTEND
ON NEXT640K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL SEGMENT SPACE
MANAGEMENT AUTO;
spool off
exit;

4.3 Creating Database Objects and Data using TPCC and STB

In the current tests, database objects—tables, indexes, procedures, etc.—and data are
primarily created by a couple of database tools: Benchmark Factory for Oracle-
TPCC® from Quest Software [3] and STB [4]. Benchmark Factory for Oracle is a
load and benchmark test tool for Oracle database testing. It creates multiple database
objects and thousands of user transactions. An average run in the test took
approximately six hours. STB was developed in-house [4] and was written in Oracle
PL/SQL. It creates multiple user procedures and tables for data of various sizes and

patterns. STB was designed to generate known data, which can be used later for
validating the cloned database. Data generated by TPCC and STB are stored in the
“USER” tablespace.

Figure 2 depicts a GUI panel from the Benchmark Factory-TPCC run. It shows the
types of database objects created and operations performed.

& st-pe23uw
isual Control Center - TPCC1.vsh - [TPCC1.vsh] &
| FlFe |Edt Yew Iet Broject Queve feets Tock Widow Heb 18]
[5 tew [;,'?'Opm = }:‘m %c:m- E:esve) hdo (uRedo | J Wead E Cuest » AS‘:&‘[Gﬂm JE
:AEHUEH'CFE: |§ TRCChm j dOw
E- i) TP [Fun Queue .
B Test Serps
A [h Trarsactions
E 23 Avable it Tramsactons for TRCC D Seqence © [Mane St [Po
3Tahb Creation | B IPCCI COMPLETE TRl
Creabe C_Warehouse Table ﬁ 14 TPCL- cmalewdea [COMPLETE TRl
Create C_Disict Tahke ﬁ 13 TRCL - loadtable COMPLETE TRI
£
£

Create C_Customer Table 12 TPCL-cesaleproced . COMPLETE TPI

Create C_History Table: 11 TPCL-cregletasble COMPLETE TRI
Creabe C_New_Ordsr Teble

Creabe C_Onder Teble

Creabe C_Onder_Line Table
Create C_ltem Tablz

Create C_Stock Table

B ﬂ Stoved Procedure Crestion %
Create Mew Order Procedurs 1

Create Hew Order Procedure 2
Creabe Paymen: Procedure 1
Creabe Paymen: Procedure 2
Creabe Cvider Status Procedurs 1
Creabe Cvider Status Procedure 2
Create Defvery Procedure
Create Stock Level Frocedure
oy J Table Load 4] | E
- Index: Creation
[TPC C Transactions E Runluzue |_E Aoerk Stalus |ﬂ Summary |ﬂ Had-T'anSmmayl
] e Deletion
[
I

1] Obdect Deletion

ser Scenains

[Outout y

2 Performing Static Dalabase Test - Create Stock Level Procedure’...
Stack-Level Trarsacion * Static: Database Test Treate Stock Level Procedurs’ has executed 1 Ti

Order-Status Transaction

Paymant Trarezckion
New Order Tramsaction ** Benchmark complete.

Deltry Trarsaction

Figure 2) TPCC Window panel.

The STB tool comprises lengthy PL/SQL scripts and will not be shown in this paper.

5.0 Cloning a Database in a NAS Environment

Clone means an exact copy of the original. Cloning a database is the routine DBA
task of updating test and development environments from production, and it usually
involves backup and recovery processes. The clone can run as an independent
instance under a new environment. It should be noted that the clone can only run
under the same operating system as the production. One cannot expect, for example,
the production database to run on Solaris and the clone on AIX. Moreover, the
cloning process should be carried out only when traffic to the production filers is low.
DBA should schedule cloning and backup prudently.

This section focuses on a non-RMAN clone under a NAS environment. The next
section will discuss RMAN clone in a SAN environment.

There are two types of database backups: hot and cold. In a hot backup, the database
is open and extensive transaction activities can occur. In this case, the datafiles tend
to be inconsistent with respect to the checkpoint System Change Number (SCN).
Archived redo logfiles are mandatory for cloning the databa %h a cold backup, the
database is shut down. There are no user transactions and ground process that
could change the system SCN. Therefore, the datafiles 8(6 checkpointed to the same
SCN, and the state of the database is consistent. M p@BAs use cold backup for
cloning. However, there are times that t atab annot be shut down and hot
backup must be employed. O @

efficient way for database bac ¢ filer command can clone a flexible
volume of 200GB in abm@vo to minutes.

P
O

X
5.1 Full Databag“Clq@with a Hot Backup

The NetApp flexible-volume c&i&wg fez e prov1des an extremely convenient and

Hot backups are performed when the database is open. The database must also be
operated in archive log mode. Using the production “DB1” created previously as the
source database, our task is to create a clone of “DB1” named “CLONEDBI1”. The
clone can reside on the same machine as the source, or it can reside on a different
machine.

In the cloning process, only the production datafiles and archived redo logfiles are
duplicated using the NetApp filer flexible-volume clone feature. It is not necessary to
duplicate the online redo logs and control files. They are recreated during the cloning
process.

The following steps describe the cloning process.

Step (a):

Correctly set the environment variables ORACLE_SI D, ORACLE_HOME, and
ORACLE_BASE to reflect the clone’s instance and storage configurations. If the clone
and the source exist on the same machine, $ORACLE_HOME should be similar for both.

oracle> setenv ORACLE SID CLONEDB1
oracle> setenv ORACLE_BASE /export/home/oracle9/clonebase
oracle> setenv ORACLE HOME /export/home/oracle9/OraHomel

Step (b):

Create the following directories on $ORACLE_BASE to store the clone’s system files,
initialization files, alert log files, trace files and control files, etc.

oracle> mkdir $SORACLE BASE/dblclone/admin
oracle> mkdir SORACLE BASE/dblclone/dbs

oracle> mkdir SORACLE BASE/dblclone/oradata
oracle> mkdir $ORACLE BASE/dblclone/admin/bdump
oracle> mkdir SORACLE BASE/dblclone/admin/cdump
oracle> mkdir $ORACLE BASE/dblclone/admin/pfile
oracle> mkdir $ORACLE BASE/dblclone/admin/udump

=\
X >
Step (¢) C) ‘QQ

Create an initialization file %@;@BICLONE” by simply copying the
existing one from producég\ Bl1, n modify the file with the following
c

4

parameters to fit the cl Vir ent: db_domai n, db_nane,
background_dunp_ unp_dest, user_dunp_dest, control _files,

i nst ance_nane, i cena and | og_archi ve_dest, etc. Name the
resulting initialization fil€)hi t A onedbl. or a and put it on
$ORACLE_BASE/ dbicl /admi n/ pfile.

Step (d)

Now we are ready to duplicate the production database “DB1”. We need to clone the
volumes containing all the DB1 datafiles and archived redo logfiles. However, keep
in mind that the database is open during the cloning process and user activities are
still occurring. That is, the TPCC and STB tools are still inserting and updating data
on “DB1”, resulting in changes of SCN on transactional commits.

To duplicate datafiles, we first find out what tablespaces exist on “DB1”. Then we
apply the Oracle BEG N BACUP command for these tablespaces.

Once the tablespaces are found, execute the following SQL script on “DB1”:

ALTER TABLESPACE SYSTEM BEGIN BACKUP;
ALTER TABLESPACE UNDOTBS1 BEGIN BACKUP;
ALTER TABLESPACE DRYS BEGIN BACKUP;
ALTER TABLESPACE INDX BEGIN BACKUP;
ALTER TABLESPACE TOOLS BEGIN BACKUP;
ALTER TABLESPACE USERS BEGIN BACKUP;
ALTER TABLESPACE XDB BEGIN BACKUP;
ALTER TABLESPACE USERTS BEGIN BACKUP;

V@

-

These BEG N BACKUP comma the checkpoint SCN in the datafile
headers of the associated t pace hat is, even though there are user transactions
in progress, the checkp C remaln constant until the command END BACKUP

1s issued. Q_ \

Now we are ready to rﬁfa clone of DB1 on the filer. Make sure that there is
enough disk space on the filer aggregates to store the clone. Check the aggregates’
free spaces using the following commands before cloning begins.

filer> df -A -g aggrl

Aggregate total used avail capacity
aggrl 454GB 88GB 365GB 20%
aggrl/.snapshot 23GB 0GB 23GB 0%

filer> df -A -g aggr2

Aggregate total used avail capacity
aggr2 454GB 198GB 255GB 44%
aggr?2/.snapshot 23GB 0GB 23GB 0%

filer> vol clone create userdataClone -b dbuserdata
Creation of clone volume 'userdataClone' has completed.

filer> vol clone create sysdataClone -b sysdata
Creation of clone volume 'sysdataClone' has completed.

The filer vol cl one command basically creates new metadata for the new volume
and a reference to the source volume snapshot.

As mentioned previously, the cloning process should be conducted when traffic to the
filer is low. In these tests the average filer CPU usage was around 50 percent, and the
cloning of 300GB of data took just a few minutes.

After the volume cloning process is completed, we end the tablespace backups with
the following SQL script.

ALTER TABLESPACE SYSTEM END BACKUP;
ALTER TABLESPACE UNDOTBS1 END BACKUP;
ALTER TABLESPACE DRYS END BACKUP;
ALTER TABLESPACE INDX END BACKUP;
ALTER TABLESPACE TOOLS END BACKUP;
ALTER TABLESPACE USERS END BACKUP;
ALTER TABLESPACE XDB END BACKUP;
ALTER TABLESPACE USERTS END BACKUP; ?

q§>
Next, we duplicate the archived redo logfiles. Archlve logs are mandatory for
recovery of the cloned database “DB1CLO $ e most recent “DB1” redo
n red

log records, we archive the unarchived Before doing so, we first

check the status of the archive proces the afchive log mode.
_\, A
SQL > SELECT ARCHIVER FROM VS$INSTANCE;
ARCHIVE
STARTED

SQL> SELECT LOG_MODE FROM V$DATABASE;
LOG_MODE

ARCHIVELOG

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

The LOG CURRENT SQL command archives the most recent online redo logfiles. We
can now clone the volume containing the archived redo logfiles with the filer
command:

filer> vol clone create archClone -b archivedlog
Creation of clone volume 'archClone' has completed.

In the test, we cloned about 300GB of datafiles and archived redo logfiles within a
few minutes by simply using two filer vol cl one commands. This efficiency and
simplicity is a result of using NetApp Snapshot technology, which offers DBA a
robust and fast backup mechanism. In addition, the flexible volume feature allows
users to create a distinct container (volume) for a distinct dataset. This is extremely
useful for partial backup of a database. For instance, we can create database datasets
such as the Oracle binary files, datafiles, multiplexed online redo logfiles, or the
archived redo logfiles and store them in separate containers. Each dataset has its own
container, and the size of the container is based on the dataset space requirement. If
you want to back up a particular dataset—for example, the archived redo logfiles—
you need only back up the associated container. No other datasets are involved. This
method obviously saves a DBA time and energy in doing backups so that she can
spend her energy doing other important tasks.

Step (e):

We can now mount the previously cloned volumes “sysdataGl@he” and
“archClone”’on the Oracle server, which can be the same ine as the source
database “DB1” or a different machine. ’

O
A X

oracle9# mount -o hard, intr,suid,vers=3,proto=tcp, llock, forcedirectio,
rsize=32768,wsize=32768, filer:/vol/userdataClone
/export/home/dblclone/userdata

oracle9# mount -o hard, intr,suid,vers=3,proto=tcp,llock, forcedirectio,
rsize=32768,wsize=32768,filer:/vol/sysdataClone /export/home/dblclone/sysdata
oracle9# mount -o hard, intr,suid,vers=3,proto=tcp,llock, forcedirectio,
rsize=32768,wsize=32768, filer:/vol/archClone /export/home/dblclone/archlog
oracle9# mount -o hard, intr,suid,vers=3,proto=tcp,llock, forcedirectio
rsize=32768,wsize=32768, filer:/vol/loglClone /export/home/dblclone/logl
oracle9# mount -o hard,intr,suid,vers=3,proto=tcp,llock, forcedirectio
rsize=32768,wsize=32768, filer:/vol/log2Clone /export/home/dblclone/log2

\

Note that we did not duplicate the online redo log files of the production “DB1”.
Instead, we created new volumes “log1Clone” and “log1Clone” to store the online
redo logfiles for the clone. In fact, it is advised that you do not duplicate the online
redo logfiles and control files since they may corrupt your clone if not used carefully.

Step (f):

At this point, we are done with the file backups and are ready to recover the clone
“DB1CLONE”. First, we recreate the clone’s control files. On the production server,
issue this SQL command:

SQL> alter database backup controlfile to trace

Database altered.

This command generates a trace file to be written to wherever the production “DB1”
initialization parameter USER_DUMP_DEST is pointing. In our case, it is in
$ORACLE_HOVE/ DB1/ admi n/ udunp. However, this trace file is somewhat messy and
needs to be reshaped. Here is the reshaped trace file in the form of an SQL script
control C one. sql .

-- controlClone.sql --

connect / as sysdba
STARTUP NOMOUNT
pfile=/export/home/oracled/clonebase/dblclone/admin/pfile/initDB1ICLONE. ora
CREATE CONTROLFILE SET DATABASE "DBICLONE" RESETLOGS NOARCHIVELOG
-— SET STANDBY TO MAXIMIZE PERFORMANCE
MAXLOGFILES 5
MAXLOGMEMBERS 3
MAXDATAFILES 100
MAXINSTANCES 1
MAXLOGHISTORY 907
LOGFILE
GROUP 1 (
' /export/home/dblclone/logl/redo0l.log"
) SIZE 100M,
GROUP 2 (
' /export/home/dblclone/log2/redo02.1og"
) SIZE 100M
-— STANDBY LOGFILE
DATAFILE
' /export/home/dblclone/sys/system0l.dbf"’,
' /export/home/dblclone/sys/undotbs01.dbf"',
' /export/home/dblclone/sys/undotbs02.dbf"',
' /export/home/dblclone/sys/undotabs03.dbf"',
'/export/home/dblclone/sys/indx01.dbf"',
' /export/home/dblclone/sys/tools01.dbf",
'/export/home/dblclone/users/users0l.dbf",
' /export/home/dblclone/users/users02.dbf"',
'/export/home/dblclone/users/users03.dbf",
' /export/home/dblclone/users/users04.dbf’',
' /export/home/dblclone/users/users05.dbf"',
' /export/home/dblclone/users/users06.dbf"',
' /export/home/dblclone/users/users07.dbf"',
' /export/home/dblclone/users/users08.dbf"',
' /export/home/dblclone/users/users09.dbf"',
' /export/home/dblclone/users/usersl0.dbf"’
CHARACTER SET WE8IS0O8859P1;

Execute cont rol d one. sgl in the clone’s instance. This will create new control
files for the clone. The files are stored on the directory specified by the clone’s
initialization parameter control _fil es.

SQL> @controlClone.sqgl
Connected to an idle instance.

ORACLE instance started.

Total System Global Area 135352820 bytes

Fixed Size 455156 bytes
Variable Size 109051904 bytes
Database Buffers 25165824 bytes
Redo Buffers 679936 bytes

Control file created.

Step (g):

In Step (e), we archived the most recent online redo logfiles of the production
database “DB1”. However, traffic to the database is still continuing. Users’ records
keep filling up the active online redo logfiles. Therefore, it is a good idea to check
which online redo logfiles have not been archived. Use the f&L@wing SQL command

on the DB1 instance to achieve that: 6
X
{ % /O
SQL> select a.group# "GROUP", a.member, b.status
"STATUS", b.archived from v$logfile a, v$log b where
a.group#=b.group# and b.archived='NO";
SQL> /
GROUP
MEMBER
STATUS ARC
3
/export/home/STB1/log 1/redo03a.log
CURRENT NO
3
/export/home/STBl/log 2/redo03b.log
CURRENT NO

The files r edo0O3a. | og and r edo03b. | og have not been archived. Copy them to the
cloned database “DB1CLONE” archive logs directory for later use. In addition, if
there is any new archived logfile generated after the snapshot was created as a result
of the volume clone (Step d), copy it to the archived logs directory as well.

Step (h)

Now recover the clone “DB1CLONE”. In the clone instance, issue this command:

SQL> recover database using backup controlfile

This command will ask you to enter the archived log file names one by one for
recovery. You can select the AUTO option. When the archived logs are done, choose
the fi | enane option and enter the previously copied files r edo03a. | og and
redo3b. | og. The following message indicates the step:

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
/export/home/STB1/clone/archlog/redo03b.log

Log applied.

Media recovery complete.

Now that the recovery process for the clone “DB1CLONE” is complete, open it with
the r eset | ogs option:

sgl> alter database open resetlogs; 6&
Database altered. 4
g S
0
The clone “DB1CLONE” is now re dQ sﬁlt is recommended that you back up

the clone immediately since the C 1ve logfiles are now reset. They cannot be
used again to recreate the clo K?‘ @

The above database cl @pro res are shown step by step for clarification. In
general, all the steps&ge ;1\' ated in a single script.

v
C)O

5.2 Partial Database Clone with a Hot Backup

The previous section describes a way to clone an entire database. However, DBA
may sometimes want to clone just a single user tablespace from production for
maintenance. This section describes how the task is performed using the NetApp filer
flexible-volume clone feature.

As an example, our task is to duplicate the production database “DB1” tablespace
“USERS” stored on the filer volume “dbuserdata”. Here are the steps:

(a) Issue this SQL command in the DBI1 instance:

SQL> alter tablespace users begin backup;

Tablespace altered.

(b) Make a clone of the production volume “dbuserdata”, which is 40GB in size, and
name the cloned volume “userClone”. The cloning process usually takes about two to
four minutes depending on filer traffic. This is the only step you need to do on the
filer:

filer> vol clone create userClone -b dbuserdata

Creation of clone volume 'archClone' has completed.

(c) End the backup process:

SQL> alter tablespace users end backup;

Tablespace altered.

x<Q
6(0

(d) Now the cloned volume can be mounted onto t @acle server to replace the

original. After mounting, perform a d1 reegbery on the cloned tablespace:

SQL> recover tablespace users;
SQL> alter tablespace users online;

Tablespace altered.
N\ \"

&8

5.3 Full Database Clone with a Cold Backup

The previous sections described cloning a production database using a hot backup, in
which the database is open. In a cold backup, the database is shut down and no
activity is in progress, so the database is in a consistent state.

From the filer point of view, there is no difference between a hot backup and a cold
backup. The filer clones only the flexible volumes that compose the database.
Therefore, the steps to create a cloned database discussed in Sec. 5.1 for a hot backup
are still valid for a cold backup, except that those SQL commands with BEG N
BACKUP and END BACKUP are no longer necessary.

In general, cloning database using a cold backup is faster and more consistent than
using a hot backup. Therefore, if possible, cloning database using a cold backup is
highly recommended.

5.4 Partial Database Clone with a Cold Backup

To duplicate a volume containing multiple tablespaces and datafiles on the filer, use
the following filer command:

filer> vol clone create userdataClone - b dbuserdata

After creating the cloned volume “userdataClone”, you can mount it to the Oracle
server at the same mount point of the original volume “dbuserdata”. Then, start up the
database. No difference should be seen between the cloned and the original volumes.

Oracle9> mount filer:/vol/userdataClone /export/home/DBl/user data
Oracle9> sglplus “sys/passwd as sysdba”
SQL> startup pfile=/export/home/OraHomel/admin/DBl/pfile/initDBl.ora;

\3
4 °
>
5.5 Recommendations for C&@\g %)

It is important to note that clo @5 da e from production on the same filer
requires prudent procedure ele s may result in corrupting the production.
Therefore, it is recomm that&of possible, the clone be placed on a different host

and named with diff atl‘@{br system files, control files, datafiles, and redo

6. Cloning Database in a SAN Environment Using RMAN

NetApp technical reports related to LUN cloning and backup/recovery of Oracle9i
database using a NetApp filer in SAN environment were published in Refs [6,7]. This
paper focuses on database cloning using the NetApp flexible-volume cloning feature
and RMAN.

6.1 Creating Aggregates, Flexible Volumes, and LUNs

First create aggregates and flexible volumes on the filer. The steps are similar to those
described in Section 4.1.

filer> aggr create aggrl 30

filer> aggr create aggr2 13

filer> vol create userdata aggrl 500g
filer> vol create archivedlog aggrl 300g
filer> vol create logl aggr2 50g

filer> vol create log2 aggr2 50g

filer> vol create sysdata aggr2 100g

&
Then create LUNSs on the flexible Volumes.ﬁz holég%%racle user datafiles, system

datafiles, archived redo logfiles, and t Qﬂine 1 ogfiles. In this test, a single
LUN is created to hold multiple ﬁleb QO

a A
filer> lun create -s 200g -t solaris /vol/userdata/u_data
filer> lun create -s 200g -t solaris /vol/archivedlog/arch
filer> lun crate -s 60g -t solaris /vol/sysdata/s_data
filer> lun create -s 25g -t solaris /vol/log/log 1
filer> lun create -s 25g -t solaris /vl/log/log7§

-

After the LUNs are cr@% map them to the Oracle server (initiator group).

filer> lun map /vol/userdata/u data oracle9 0
filer> lun map /vol/sysdata/s_data oracle9 1
filer> lun map /vol/log/log 1 oracle9 2

filer> lun map /vol/log/log 2 oracle9 3

filer> lun map /vol/archivedlog/arch oracle9 4

Now that LUNs have been created and mapped to the Oracle server “oracle9”, we can
configure the server to utilize these resources. The tasks to configure the server—
modifying the / kernel / drv/ sd. conf for new LUN mappings and creating new
partition tables—are well documented in Ref. [5] and will not be discussed here.

On the Oracle server, a new raw disk partition will be created for each LUN mapped.
Next, create a file system on each partition by executing the following shell script:

#!/usr/bin/sh

echo y | newfs /dev/rdsk/c5t0d0s6
echo y | newfs /dev/rdsk/c5t0dls6
echo y | newfs /dev/rdsk/c5t0d2s6
echo y | newfs /dev/rdsk/c5t0d3s6
echo v | newfs /dev/rdsk/c5t0d4sé6

Add the following entries to the Oracle server system file / et ¢/ vf t ab to enable
automatic remount at host reboot.

/dev/dsk/c5t0d0s6 /dev/rdsk/c5t0d0s6/ /export/home/lun/userdata
ufs 2 yes forcedirectio,onerror=lock

/dev/dsk/c5t0d1s6 /dev/rdsk/c5t0dls6//export/home/lun/sysdata
ufs 2 yes forcedirectio,onerror=lock

/dev/dsk/c5t0d2s6 /dev/rdsk/c5t0d2s6/ /export/home/lun/logl ufs
2 yes forcedirectio,onerror=lock

/dev/dsk/c5t0d3s6 /dev/rdsk/c5t0d3s6/ /export/home/lun/log2 ufs
2 yes forcedirectio,onerror=lock

/dev/dsk/c5t0d4s6 /dev/rdsk/c5t0d4s6/ /export/home/lun/archlog
ufs 2 yes forcedirectio,onerror=lock

O o
Z
After the file systems have beenﬁ{glted f% the LUNs, mount them and change the

file ownership. A?“ ()
,-® x%(o

oracle9> mount /export/home/lun/userdata

oracle9> mount /export/home/lun/sysdata

oracle9> mount /export/home/lun/logl

oracle9> mount /export/home/lun/log2

oracle9> mount /export/home/lun/archlog

oracle9> chown -R oracle:dba /export/home/lun/userdata
oracle9> chown -R oracle:dba /export/home/lun/sysdata
oracle9> chown -R oracle:dba /export/home/lun/logl
oracle9> chown -R oracle:dba /export/home/lun/log2
oracle9> chown -R oracle:dba /export/home/lun/archlog

6.2 Creating Production Database on Filer LUNs

The procedures to create a production database “DB1” described in Section 4.2 can
be applied here. The mount points created for the filer LUNs discussed in section 6.1

are used to hold the database user datafiles, system datafiles, online redo logfiles, and
archived redo logfiles.

After the production database has been created, we insert data in it by generating
transactions using TPCC and STB tools, similar to those described in section 4.3.

6.3 Procedures for Cloning a Database in an FCP Environment

We are ready to clone the production database created previously. Here are the steps.
Step (a):

On the filer, clone the flexible volumes that comprise the production datafiles and
redo archived logfiles. Make sure that appropriate procedures have been performed
for a hot backup. Refer to Section 5.1 for details on cloning from hot backups. For
cloning from cold backups, simply shut down the database i ce and then, as good
practice, perform the UNIX command sync to flush any, system buffering:

O

| W)

filer> vol clone create userdataCLONE -b userdata
filer> vol clone create sysdataCLONE -b sysdata
filer> vol clone create archlogCLONE -b archlog

\Y%
K
Step (b): Q_C)\z\ {\@

: &

The filer vol cl o&&%&ns in the previous step not only create cloned volumes
but also create cloned s that the volume contains, as indicated below:

filer> lun show

/vol/userdata/u_data 100g (107374182400) (r/w, online, mapped)
/vol/sysdata/s_data 60g (64424509440) (r/w, online, mapped)
/vol/archlog/arch 200g (214748364800) (r/w, online, mapped)
/vol/logl/logl 25g (26843545600) (r/w, online, mapped)
/vol/log2/1log2 25g (26843545600) (r/w, online, mapped)
/vol/sysdataCLONE/s data 60g (64424509440) (r/w, offline, mapped)
/vol/userdataCLONE/u_data 100g (107374182400) (r/w, offline, mapped)
/vol/archlogCLONE/arch 200g (214748364800) (r/w, offline, mapped)
/vol/1loglCLONE/logl 25g (26843545600) (r/w, offline, mapped)
/vol/10g2CLONE/1log2 25g (26843545600) (r/w, offline, mapped)

Notice that the cloned LUNSs are created offline and mapped to the same igroup with
identical raw device IDs as the original LUNs. We need to reassign a new device ID

to each cloned LUN and put it online. In the following example, we unmap each
cloned LUN from the igroup “oracle9” and then map it again with a new device ID.

filer>
filer>
filer>
filer>
filer>
filer>
filer>
filer>
filer>
filer>
filer>
filer>
filer>
filer>
filer>

lun
lun
lun
lun
lun
lun
lun
lun
lun
lun
lun
lun
lun
lun
lun

unmap /vol/userdataCLONE/u data oracle9
map /vol/userdataCLONE/u_data oracle9 5
online /vol/userdataCLONE/u data

unmap /vol/sysdataCLONE/s data oracle9
map /vol/sysdataCLONE/s data oracle9 6
online /vol/sysdataCLONE/s_data

unmap /vol/loglCLONE/logl oracle9

map /vol/loglCLONE/logl oracle9 7
online /vol/loglCLONE/logl

unmap /vol/l1og2CLONE/log2 oracle9

map /vol/log2CLONE/log2 oracle9 8
online /vol/1log2CLONE/log2

unmap /vol/archlogCLONE/arch oracle9
map /vol/archlogCLONE/arch oracle9 9
online /vol/archlogCLONE/arch

Step (¢):

On the Oracle server “oracle9”, we should be able to sé@g
created for each cloned LUN:

2
>

0Q4 >

t a new disk device is

P
oracle9.lab.netapp.com:r sanlun lun show

filer: lun-pathname device filename adapter lun size
lun state
filer:/vol/userdata/u data /dev/rdsk/c5t0d0s2 1pfcO 100.0g (107374181888)
igﬁgr:/VOl/sysdata/sidata /dev/rdsk/c5t0dls2 1pfcO 60.0g (64424508928)
?g?Zr: /vol/logl/logl /dev/rdsk/c5t0d2s2 1lpfcO 25.0g (26843545088)
igggr: /vol/log2/log2 /dev/rdsk/c5t0d3s2 lpfcO 25.0g (26843545088)
§?$Zr:/vol/archlog/arch /dev/rdsk/c5t0d4s2 1pfcO 200.0g (214748364288)
igggr:/vol/userdataCLONE/uidata /dev/rdsk/c5t0d5s2 1pfcO 100.0g (107374181888)
?ggzr:/vol/sysdataCLONE/sidata /dev/rdsk/c5t0d6s2 lpfcO 60.0g (64424508928)
i?ggr:/vol/loglCLONE/logl /dev/rdsk/c5t0d7s2 1lpfcO 25.0g (26843545088)
i?ggr:/vol/log2CLONE/log2 /dev/rdsk/c5t0d8s2 lpfcO 25.0g (26843545088)
ggggr:/vol/archlogCLONE/arch /dev/rdsk/c5t0d9s2 1pfcO 200.0g (214748364288)
GOOD

Now we mount the cloned LUNSs, which hold the cloned database, on the server:

oracle9#
oracle9#
oracle9#
oracle9#
oracle9#

/dev/dsk/c5t0d5s6/
/dev/dsk/c5t0d6s6/
/dev/dsk/c5t0d7s6/
/dev/dsk/c5t0d8s6/
/dev/dsk/c5t0d9s6/

mount
mount
mount
mount
mount

/export/home/lun/STB1Clone/userdata
/export/home/lun/STB1Clone/sysdata/
/export/home/lun/STB1Clone/logl
/export/home/lun/STB1Clone/log2
/export/home/lun/STB1Clone/archlog/

Then on the server, create the appropriate directories for Oracle system files, the
initialization file, and control files for the clone, similar to those described in Section
5, Steps (b), (¢) and (f). If you are running the clone and production on the same
machine, make sure that the two database names, redo logfile, and control file
locations are different.

Step (e):

After the clone database’s control files and initialization file have been created, we
can use RMAN to recover the database from the clone archived redo logfiles:

oracle9> rman target sys/passwd@cloneDB

Recovery Manager: Release 9.2.0.1.0 - Production

Copyright (c) 1995, 2002, Oracle Corporation. All rights reserved.
connected to target database (not started)

RMAN> startup mount

Oracle instance started
database mounted

Total System Global Area 135352820 bytes
Fixed Size 455156 bytes
Variable Size 109051904 bytes
Database Buffers 25165824 bytes
Redo Buffers 679936 bytes

RMAN> recover database until sequence 6 thread 1;

Starting recover at 04-NOV-04

using target database controlfile instead of recovery catalog
allocated channel: ORA DISK 1

channel ORA DISK 1: sid=11 devtype=DISK

starting media recovery
media recovery complete

Finished recover at 04-NOV-04
RMAN> alter database open resetlogs;

database opened

At this stage, the multiplexed online redo logfiles have been created at the locations
specified in the control files. Note that in the RMAN command r ecover dat abase
until,sequence 6 is used in the present test. You should check this sequence
number in your archived redo logfile directory before using it.

Step (f):

Now the clone database has been created. It is important to note that the above
duplication process will result in the production and clone having an identical DBID.
Thus, changing the clone’s DBID is recommended before using it, especially if it is
running on the same host as the production and the RMAN recovery catalog is used
for backup and recovery. The DBNEWID utility provided by Oracle is meant for this
purpose and gives the clone a new DBID.

Note that RMAN also provides the command dupl i cat e to clone a database.
Basically the dupl i cat e command performs the following tasks: (1) determining the
nature and locations of database backups; (2) allocating an auxiliary channel for the
auxiliary instance; (3) restoring the datafiles and archived redo logs to the auxiliary
instance; (4) building a new auxiliary control file; (5) performing an incomplete
recovery for the clone; (6) resetting the DBID for the clone; and (7) opening the clone
with r eset | ogs. However, by using the NetApp ﬂexible-va{@ne cloning feature as
described above you can avoid the lengthy backup and re processes that the
RMAN command dupl i cat e requires. This signiﬁcan&{ ves a DBA’s time and

energy. /O
QQA o
Q7
I
G
S
SIS
C)O

7. Verifications of the Cloned Database

This section describes the methods used to validate the cloned database. The methods
include (a) verifying the data generated by TPCC and STB, (b) using the Oracle tool
db_veri fy to check the structural integrity of the database, and (c) using the NetApp
filer commands WAFL_check and aggr waf | i r on to check volume integrity.

7.1 STB and TPCC Verifications

The user data in the database are essentially generated by the STB and TPCC tools, as
described in Section 4.3. STB generates known data in the production database
“DB1”. These data are then duplicated in the cloned database. To validate the cloned
data, we retrieve the known data from the clone and compare them with the original
to make sure they match. Similarly, TPCC creates data for various tables, indexes,

and procedures, etc. The same TPCC transactions are run on,@ clone to make sure
that the data objects are intact. 6(0

7.2 Verifications with NetApp V\AFQ?Le &r waf | i ron, and Oracle
db_verify O

the cloned database, NetAp s “WAFL_check” and “aggr _wafliron”
are used. The former com t filer reboot, while the latter is run when the
aggregate is online.

.52* \QJ

filer> aggr wafliron start aggrl

To check the data integrity of the\Ne tAgﬁ er aggregates and volumes that comprlse
a

Oracle also provides the db_veri fy utility to check the structural integrity of the
database files for corruption. The following Perl script performs the db_veri fy
operations on all data files with names ended with . dbf in a directory. It also prints
the db—veri fy results to a file.

#!/usr/bin/perl

FHAH AR R R R
#File:dbverify.pl

#This script is used to verify Oracle database datafiles

#Usage: perl db verify.pl --dir=directory of the datafiles

FHHH AR R R R
use strict;

use Getopt::Long;

use IO0::Handle;

my S$dir;

my S$status;

GetOptions ('dir=s' => \S$dir,);

chomp ($dir);

#Create an output file

open (IFP, ">db verify.txt") or die "Can't open file:$!\n";
IFP->autoflush (1) ;

my @dbf list = “1ls -alt $dir’;

Do db_verify on all the DB data files and print the results

for (my $i =0; $i < @dbf list; $i++) |

if ($dbf list[$i] =~ /\s+(\S+\.dbf)/) {
print IFP "\n\nVerify $1\n";
Sstatus = “dbv file=$dir/$1 blocksize=8192 2>&l1°;

print IFP "$status";
}

}
close (IFP);

X
A
The following shows the db—veri fy t of a@ngle . dbf file.
(@ uR¥e\

Verify users0l.dbf

DBVERIFY: Release 9.2.0.1.0 - Production on Fri Aug 27 10:56:53 2004
Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.
DBVERIFY - Verification starting : FILE =

/export/home/STBl/clone/users/users0l.dbf

DBVERIFY - Verification complete

Total Pages Examined : 25600
Total Pages Processed (Data) : 314
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 126
Total Pages Failing (Index): O
Total Pages Processed (Other): 20
Total Pages Processed (Seq) : 0
Total Pages Failing (Seq) : 0
Total Pages Empty : 25140

Total Pages Marked Corrupt : 0

8. Conclusion

The NetApp flexible-volume cloning feature provides DBA a fast and robust way to
clone a production database. The clone feature and its associated Snapshot technology
offers time and space efficiency in database backup and recovery operations. The
flexible volume feature allows users to create a distinct container for a distinct
dataset. This greatly simplifies backup and cloning of a partial database. The
procedures described in this paper provide a way to meet the cloning objective.

9. Caveats

The tests described in this paper were conducted in the System Test Lab. Cloning of a
Oracle9i database was done on Sun Solaris 8 and a filer F880 platform loaded with
the Anchorsteam release. NetApp has not tested this configuration with all the
combinations of hardware and software options available. T may be significant
differences in your configuration that will change the pro @ires necessary to
accomplish the objectives outlined in this paper. If you ind that any of these
procedures do not work in your env1ronmel pleasg\?@tact the author immediately.

10. Technical Reference: OQ

C)

[1] Jerry Liu, Jeff Browning an@ M OracleS for UNIX: Providing Disaster
Recovery with NetApp Snapl\@k agjnology, NetApp TR 3057, 8/2000.

[2] Customer Simulation Lfabyrhan by System Test Team. Contact: Francis Hong.
[3] Benchmark Facto ra uest Corp.: www.quest.com/bmfo.
[4] PL/SQL codes largdly ped by Shou-Wen Chen of the System Test Team.

[5] Brian Casper, Oracle9®r UNIX: Integrating with a NetApp Filer in a SAN
Environment, NetApp TR 3207, 12/2002.

[6] Richard Jooss and Brian Casper, Oracle9i for UNIX: Backup and Recovery Using a
NetApp Filer in a SAN Environment, NetApp TR 3210, 04/2004.

[7] Toby Creek, Application for Writeable LUNs and LUN Cloning in Oracle
Environments, NetApp TR 3266, 6/2003.

[8] Bruce Clarke and Sankar Bose, Using Oracle with Multiprotocol Filer,

NetApp TR 3203.

[9] Oracle Simulator, User’s Guide, Release 6.0, 1/2004

[10] Jeff Browing, OracleS8 for UNIX: Integration with a NetApp Filer, NetApp TR
3047.

Revision History

Date Name Description

http://www.quest.com/bmfo

Sunny

1/2005 Ng

Mel

5/25/2005 Shum

“ NetApp-

www.netapp.com

Creation

Updated Aggregates to conform to best
practices

© 2005 Network Appliance, Inc. All rights reserved. Specifications subject to change without notice. NetApp, NetCache, and the Network Appliance logo are
registered trademarks and Network Appliance, DataFabric, and The evolution of storage are trademarks of Network Appliance, Inc., in the U.S. and other countries.
Oracle is a registered trademark of Oracle Corporation. All other brands or products are trademarks or registered trademarks of their respective holders and should be
treated as such.

	Revision History

