
ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

Oracle 9i for UNIX: Cloning Database
Using NetApp Filer Flexible Volumes in
NAS and SAN Environments
Sunny Ng, Network Appliance | November 2004 | TR-3355

Abstract
This document describes the cloning process of Oracle 9i™ databases using

TECHNICAL REPORT

N
etw

ork A
ppliance, a pioneer and industry

leader in data storage technology, helps
organizations understand and m

eet
com

plex technical challenges w
ith

advanced storage solutions and global data
m

anagem
ent strategies.

Data ONTAP® flexible-volume clone feature and Oracle® backup/recovery
techniques. Cloning processes under both NFS and FCP environments are
considered. Procedures for validating the cloned data are also discussed.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

Table of Contents

1 Introduction
2 Requirements and Assumptions
3 Network and Storage Infrastructure
4 Creating a Production Database on a Filer in a NAS Environment

4.1 Creating Filer Aggregates and Flexible Volumes
4.2 Creating Production Database Components on Filer Volumes
4.3 Creating Database Objects and Data by TPCC and STB

5 Cloning Database in a NAS Environment
5.1 Full Database Clone with a Hot Backup
5.2 Partial Database Clone with a Hot Backup
5.3 Full Database Clone with a Cold Backup
5.4 Partial Database Clone with a Cold Backup
5.5 Recommendations for Cloning

6 Cloning Database in a SAN Environment Using RMAN
6.1 Creating Aggregates, Flexible Volumes, and LUNs
6.2 Creating Production Databases on Filer LUNs
6.3 Procedures of Cloning Database in an FCP Environment

7 Verifications of the Cloned Database
7.1 STB and TPCC Verifications
7.2 Verifications with NetApp WAFL_check, aggr wafliron and Oracle

db_verify
8 Conclusions
9 Caveats
10 Technical References

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

1. Introduction

Database administrators and developers clone databases for various reasons, such as
updating test or development environments from production or switching the
production database to the clone in case of an emergency. Cloning databases usually
involves both backup and recovery procedures. The clone can exist on the same host
as the production database or on a different host.

This paper discusses the cloning of Oracle9i databases using the NetApp Data
ONTAP flexible-volume clone feature under both NAS and SAN environments.
Specifically, this paper covers the following topics:

(a) Creating Oracle9i a production database and its components in NetApp filer

flexible volumes
(b) Performing full and partial clones of the production database in both NAS and

SAN environments using the NetApp flexible-volume clone feature, Oracle User-
Managed and RMAN recovery techniques

(c) Methods to validate the cloned database

It is important to note that the cloned database is created locally in the same filer
aggregate that accommodates the original production database. Remote cloning such
as using NetApp SnapMirror® technology is not covered here. Interested readers can
refer to Ref. [1] for the related topic.

For the purpose of this paper, clone will refer to the cloned database, production to
the source or production database, and Oracle to Oracle9i database products. The
terms source and production are used interchangeably.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

2. Requirements and Assumptions

It is assumed that the reader is familiar with the administrative commands and
operations of the NetApp filer, Data ONTAP, Oracle9i, and the UNIX® operating
system. It is further assumed that the reader has basic knowledge of the NAS and
SAN technologies.

The NetApp filer must be loaded with the Data ONTAP version that supports the
flexible-volume clone feature. At the time of writing, the version is “Anchorsteam”.
The filer must also have NFS and FCP capabilities. The Oracle database server is
assumed to have been installed on a UNIX machine and to be ready for creating
database objects.

In the database cloning process, some of the database objects and transactions are
created using the Benchmark Factory TPCC tool [3]. However, the reader is not
required to know the TPCC tool since this paper focuses on the cloning procedures
and not on how data are created.

The sample scripts and commands in this paper assume the following:

 The name of the filer is “filer”.
 The name of the Oracle server is “oracle9”.
 The name of the production instance is “DB1”.
 The name of the clone instance is “DB1CLONE”.
 The names of filer aggregates are “aggr1”, “aggr2”, and “aggr3”.
 The filer flexible volumes to store the production database are “dbuserdata”,

“sysdata”, “log1”, “log2”, and “archivedlog”.
 The filer flexible volumes to store the clone are “userdataClone”,

“sysdataClone”, “log1Clone”, “log2Clone”, “archClone”.
 The mount point of the production is “/export/home/DB1”.
 The mount point of the clone is “/export/home/db1clone”.

The tests used an Oracle 9.2.0.1.0 database server that ran on Sun Solaris™ 8. The
filer was an F880 loaded with the Data ONTAP - Anchorsteam release.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

3. Network and Storage Infrastructure

The current database cloning tests were conducted in the System Test Simcity
Customer Simulation Lab facility [2]. Figure 1 shows a schematic of the lab facility.
The Simcity lab is equipped with a Gigabit Ethernet network, multiple SAN channels,
various models of NetApp filers and NearStore® platforms, a WAN simulator, a
server farm, and a client farm, The server farm comprises mostly non NetApp
applications such as Oracle 9i Server, Clear Case™, Microsoft® Exchange™, NIS,
DNS, and Microsoft Domain Controller®, etc. The client farm includes more than a
hundred of UNIX and Windows® hosts; NetApp applications such as DataFabric®
Manager and Snap products; and non NetApp applications like Benchmark Factory™
[3], ORASIM® (Oracle Server simulator) [9], and SQLSIM® (a Microsoft SQL
Server simulator). The Simcity lab configuration is designed to be flexible in order to
simulate various customer network and storage infrastructure configurations
accurately.

NetApp has shipped thousands of multiprotocol filers to customers in different
industries. Customers have benefited from the filer performance, reliability, and
stability for their storage operations. Because these customer environments are
diverse, it is crucial to have a lab facility that can provide flexible configurations to
simulate customer environments for product testing.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

Snap Vault

Simulated Remote Site fcp
Fiber
Switch

Server Farm
Oracle9i
Clear Case
MSExchange
DNS, NIS
Domain Controller
Web Server
Virus Scanner

Filer R200
Ethernet

LAN
Switch Tape

NFS,
iSCSi,
CIFS

Snap
Mirror

WAN
SimulatorClient Farm

Solaris Hosts
Linux Hosts
Windows Hosts
SnapManager®
SnapDrive™
DataFabric Manager
VFM™
Secure Admin
ORASIM
SQLSIM
Benchmark Factory

LAN
Switch

 Filer
Cluster

Fiber
Switch

Local Site
SnapVault

Figure 1) A Schematic of Simcity Customer Simulation Lab.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

4. Creating a Production Database on a Filer in a NAS Environment

This section discusses the creation of a production database and its components and
of the filer aggregates and flexible volumes that store that database. The tools that
generate database data and objects such as tables, indexes, and procedures are also
described here.

4.1 Creating Filer Aggregates and Flexible Volumes

Before creating the database, we first create aggregates and flexible volumes on the
filer. An aggregate is a RAID-level physical pool of storage. A flexible volume is a
logical storage container inside an aggregate. A flexible volume can be as small as a
few megabytes and as large as the aggregate. There are many advantages to storing
database components in flexible volumes. To name a few, (a) a distinct volume can
be created for a distinct dataset; (b) the volume size can easily be tailored to meet the
component space requirement; and (c) flexible backup of any selected database
component can be made.

In the tests, two aggregates—“aggr1” and “aggr2”—were created. The aggregate
“aggr1” was assigned 10 disks and “aggr2” 12 disks. Distinct volumes were then
created in the aggregates for distinct datafiles. The online redo logfiles were
multiplexed in different aggregates to protect transactions from media failure.
Specifically, the volume “dbuserdata” was created for storing user tablespaces
datafiles; “archivedlog” for archived redo logfiles; “sysdata” for system, undo, and
temporary tablespaces datafiles; and “log1” and “log2” for online redo logfiles.

filer> aggr create aggr1 10
filer> aggr create aggr2 12
filer> vol create dbuserdata aggr2 200g
filer> vol create sysdata aggr1 20g
filer> vol create log1 aggr1 20g
filer> vol create log2 aggr2 20g
filer> vol create archivedlog aggr2 100g

Now, mount the filer volumes onto the Oracle server “oracle9”. Note that the NFS
mount uses TCP. In general, UDP has less protocol overhead and consequently better
performance, provided that there is a reliable and dedicated connection between the
filer and the Oracle server. However, the test environment lacks such a dedicated
connection and TCP is therefore used.

oracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio,
rsize=32768,wsize=32768, filer:/vol/dbuserdata /export/home/DB1/user_data
oracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio,
rsize=32768,wsize=32768,filer:/vol/dbsysdata /export/home/DB1/sys_data
oracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio,
rsize=32768,wsize=32768, filer:/vol/log1 /export/home/DB1/log_1
oracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio,
rsize=32768,wsize=32768, filer:/vol/log2 /export/home/DB1/log_2
oracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio,
rsize=32768,wsize=32768, filer:/vol/archivedlog /export/home/DB1/archlog

Add the following entries to the file /etc/vfstab on the host “oracle9” for an
automatic remount of the filer volumes at the host reboot.

4.2 C

We ar
recom
create
DBCA

filer:/vol/dbuserdata - /export/home/DB1/user_data nfs –
Yes hard,intr,suid,vers=3,proto=tcp,rsize=32678,wsize=32678,
llock,forcedirectio
filer:/vol/dbsysdata - /export/home/DB1/sys_data nfs –
yes hard,intr,suid,vers=3,proto=tcp,rsize=32678,wsize=32678,
llock,forcedirectio
filer:/vol/log1 - /export/home/DB1/log_1 nfs –
yes hard,intr,suid,vers=3,proto=tcp,rsize=32678,wsize=32678,
llock,forcedirectio
filer:/vol/log2 - /export/home/DB1/log_2 nfs –
yes hard,intr,suid, vers=3,proto=tcp,rsize=32678,wsize=32678,
llock,forcedirectio
filer:/vol/archivedlog - /export/home/DB1/archlog nfs - yes
hard,intr,suid,vers=3,proto=tcp,rsize=32678,wsize=32678,
llock,forcedirectio
ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

atereating Production Database Components on Filer Volumes

e now ready to create the production database at the Oracle home, which is the
mended place for the filer volume [5, 10]. We name this database “DB1” and
 it using the following SQL script. The database can also be created by using
 tool.

connect / as SYSDBA
set echo on
spool /export/home/OraHome1/assistants/dbca/logs/CreateDB.log
startup nomount pfile="/export/home/OraHome1/admin/DB1/pfile/initDB1.ora";
CREATE DATABASE DB1
MAXINSTANCES 1
MAXLOGHISTORY 1
MAXLOGFILES 5
MAXLOGMEMBERS 3
MAXDATAFILES 100
DATAFILE '/export/home/DB1/sys_data/system01.dbf' SIZE 250M REUSE
AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL
DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE
'/export/home/DB1/sys_data/temp01.dbf' SIZE 200M REUSE
UNDO TABLESPACE "UNDOTBS1" DATAFILE
'/export/home/DB1/sys_data/undotbs01.dbf' SIZE 200M AUTOEXTEND ON
NEXT 5120K MAXSIZE UNLIMITED,
'/export/home/DB1/sys_data/undotbs02.dbf' SIZE 200M AUTOEXTEND ON
NEXT 5120K MAXSIZE UNLIMITED,
'/export/home/DB1/sys_data/undotabs03.dbf'SIZE 200M AUTOEXTEND ON
NEXT 5120K MAXSIZE UNLIMITED
CHARACTER SET WE8ISO8859P1
NATIONAL CHARACTER SET AL16UTF16
LOGFILE
GROUP 1 ('/export/home/DB1/log_1/redo01a.log',
'/export/home/DB1/log_2/redo01b.log') SIZE 102400K,
GROUP 2 ('/export/home/DB1/log_1/redo02a.log',
'/export/home/DB1/log_2/redo02b.log') SIZE 102400K,
GROUP 3 ('/export/home/DB1/log_1/redo03a.log',
'/export/home/DB1/log_2/redo03b.log') SIZE 102400K;
spool off
exit;

Additional tablespaces are then created and added to DB1. For instance, the
tablespace “USERS” is created and assigned 40GB of space for storing user data.
This is illustrated in the following SQL script.

4.3

In th
prim
TPC
load
obje
appr
PL/S
ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

connect / as SYSDBA
set echo on
spool /export/home/OraHome1/assistants/dbca/logs/CreateDBFiles.log
CREATE TABLESPACE "INDX" LOGGING DATAFILE
'/export/home/DB1/sys_data/indx01.dbf' SIZE 25M REUSE
AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;
CREATE TABLESPACE "TOOLS" LOGGING DATAFILE
'/export/home/DB1/sys_data/tools01.dbf' SIZE 10M REUSE
AUTOEXTEND ON NEXT 320K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL SEGMENT
SPACE MANAGEMENT AUTO;
CREATE TABLESPACE "USERS" LOGGING DATAFILE
 '/export/home/DB1/user_data/users01.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,
 '/export/home/DB1/user_data/users02.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,
 '/export/home/DB1/user_data/users03.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,
 '/export/home/DB1/user_data/users04.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,
 '/export/home/DB1/user_data/users05.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,
 '/export/home/DB1/user_data/users06.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,
 '/export/home/DB1/user_data/users07.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,
 '/export/home/DB1/user_data/users08.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED,
 '/export/home/DB1/user_data/users09.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT1280K MAXSIZE UNLIMITED,
 '/export/home/DB1/user_data/users10.dbf' SIZE 4000M REUSE AUTOEXTEND
ON NEXT 1280K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL SEGMENT SPACE
MANAGEMENT AUTO;
CREATE TABLESPACE "XDB" LOGGING DATAFILE
'/export/home/DB1/sys_data/xdb01.dbf' SIZE 20M REUSE AUTOEXTEND
ON NEXT640K MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL SEGMENT SPACE
MANAGEMENT AUTO;
spool off
exit;

Creating Database Objects and Data using TPCC and STB

e current tests, database objects—tables, indexes, procedures, etc.—and data are
arily created by a couple of database tools: Benchmark Factory for Oracle-
C® from Quest Software [3] and STB [4]. Benchmark Factory for Oracle is a
 and benchmark test tool for Oracle database testing. It creates multiple database
cts and thousands of user transactions. An average run in the test took
oximately six hours. STB was developed in-house [4] and was written in Oracle
QL. It creates multiple user procedures and tables for data of various sizes and

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

patterns. STB was designed to generate known data, which can be used later for
validating the cloned database. Data generated by TPCC and STB are stored in the
“USER” tablespace.

Figure 2 depicts a GUI panel from the Benchmark Factory-TPCC run. It shows the
types of database objects created and operations performed.

Figure 2) TPCC Window panel.

The STB tool comprises lengthy PL/SQL scripts and will not be shown in this paper.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

5.0 Cloning a Database in a NAS Environment

Clone means an exact copy of the original. Cloning a database is the routine DBA
task of updating test and development environments from production, and it usually
involves backup and recovery processes. The clone can run as an independent
instance under a new environment. It should be noted that the clone can only run
under the same operating system as the production. One cannot expect, for example,
the production database to run on Solaris and the clone on AIX. Moreover, the
cloning process should be carried out only when traffic to the production filers is low.
DBA should schedule cloning and backup prudently.

This section focuses on a non-RMAN clone under a NAS environment. The next
section will discuss RMAN clone in a SAN environment.

There are two types of database backups: hot and cold. In a hot backup, the database
is open and extensive transaction activities can occur. In this case, the datafiles tend
to be inconsistent with respect to the checkpoint System Change Number (SCN).
Archived redo logfiles are mandatory for cloning the database. In a cold backup, the
database is shut down. There are no user transactions and background process that
could change the system SCN. Therefore, the datafiles are checkpointed to the same
SCN, and the state of the database is consistent. Most DBAs use cold backup for
cloning. However, there are times that the database cannot be shut down and hot
backup must be employed.

The NetApp flexible-volume cloning feature provides an extremely convenient and
efficient way for database backup. A single filer command can clone a flexible
volume of 200GB in about two to three minutes.

 5.1 Full Database Clone with a Hot Backup

Hot backups are performed when the database is open. The database must also be
operated in archive log mode. Using the production “DB1” created previously as the
source database, our task is to create a clone of “DB1” named “CLONEDB1”. The
clone can reside on the same machine as the source, or it can reside on a different
machine.

In the cloning process, only the production datafiles and archived redo logfiles are
duplicated using the NetApp filer flexible-volume clone feature. It is not necessary to
duplicate the online redo logs and control files. They are recreated during the cloning
process.

The following steps describe the cloning process.

Step (a):

Correctly set the environment variables ORACLE_SID, ORACLE_HOME, and
ORACLE_BASE to reflect the clone’s instance and storage configurations. If the clone
and the source exist on the same machine, $ORACLE_HOME should be similar for both.

Step

Crea
initi

Step

Crea
exis
para
back

inst

resu
$ORA

Step

Now
volu
in m
still
on “

To d
appl

oracle> setenv ORACLE_SID CLONEDB1
oracle> setenv ORACLE_BASE /export/home/oracle9/clonebase
oracle> setenv ORACLE_HOME /export/home/oracle9/OraHome1
ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

 (b):

te the following directories on $ORACLE_BASE to store the clone’s system files,
alization files, alert log files, trace files and control files, etc.

oracle> mkdir $ORACLE_BASE/db1clone/admin
oracle> mkdir $ORACLE_BASE/db1clone/dbs
oracle> mkdir $ORACLE_BASE/db1clone/oradata
oracle> mkdir $ORACLE_BASE/db1clone/admin/bdump
oracle> mkdir $ORACLE_BASE/db1clone/admin/cdump
oracle> mkdir $ORACLE_BASE/db1clone/admin/pfile
oracle> mkdir $ORACLE_BASE/db1clone/admin/udump

 (c)

te an initialization file for the clone “DB1CLONE” by simply copying the
ting one from production DB1. Then modify the file with the following
meters to fit the clone environment: db_domain, db_name,
ground_dump_dest, core_dump_dest, user_dump_dest, control_files,

ance_name, service_names, and log_archive_dest, etc. Name the
lting initialization file initClonedb1.ora and put it on
CLE_BASE/db1clone/admin/pfile.

 (d)

 we are ready to duplicate the production database “DB1”. We need to clone the
mes containing all the DB1 datafiles and archived redo logfiles. However, keep
ind that the database is open during the cloning process and user activities are
occurring. That is, the TPCC and STB tools are still inserting and updating data
DB1”, resulting in changes of SCN on transactional commits.

uplicate datafiles, we first find out what tablespaces exist on “DB1”. Then we
y the Oracle BEGIN BACUP command for these tablespaces.

On

Th
he
in
is

No
en
fre

SQL> select tablespace_name from dba_tablespaces;

TABLESPACE_NAME

SYSTEM
UNDOTBS1
TEMP
DRSYS
INDX
TOOLS
USERS
XDB
USERTS

9 rows selected.

ut-
of-

da
te

ce the tablespaces are found, execute the following SQL script on “DB1”:

es
ad
pr
is

w
ou
e

Y

ALTER TABLESPACE SYSTEM BEGIN BACKUP;
ALTER TABLESPACE UNDOTBS1 BEGIN BACKUP;
ALTER TABLESPACE DRYS BEGIN BACKUP;
ALTER TABLESPACE INDX BEGIN BACKUP;
ALTER TABLESPACE TOOLS BEGIN BACKUP;
ALTER TABLESPACE USERS BEGIN BACKUP;
ALTER TABLESPACE XDB BEGIN BACKUP;
ALTER TABLESPACE USERTS BEGIN BACKUP;
ARCHIV
AL C

OP

Con
ten

ts
may

 be
 o

e BEGIN BACKUP commands will freeze the checkpoint SCN in the datafile
ers of the associated tablespaces. That is, even though there are user transactions
ogress, the checkpoint SCN will remain constant until the command END BACKUP

sued.

 we are ready to make a clone of DB1 on the filer. Make sure that there is
gh disk space on the filer aggregates to store the clone. Check the aggregates’
spaces using the following commands before cloning begins.

filer> df -A -g aggr1
Aggregate total used avail capacity
aggr1 454GB 88GB 365GB 20%
aggr1/.snapshot 23GB 0GB 23GB 0%

filer> df -A -g aggr2
Aggregate total used avail capacity
aggr2 454GB 198GB 255GB 44%
aggr2/.snapshot 23GB 0GB 23GB 0%

filer> vol clone create userdataClone -b dbuserdata
Creation of clone volume 'userdataClone' has completed.

filer> vol clone create sysdataClone -b sysdata
Creation of clone volume 'sysdataClone' has completed.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

The filer vol clone command basically creates new metadata for the new volume
and a reference to the source volume snapshot.

As mentioned previously, the cloning process should be conducted when traffic to the
filer is low. In these tests the average filer CPU usage was around 50 percent, and the
cloning of 300GB of data took just a few minutes.

After the volume cloning process is completed, we end the tablespace backups with
the following SQL script.

ALTER TABLESPACE SYSTEM END BACKUP;
ALTER TABLESPACE UNDOTBS1 END BACKUP;
ALTER TABLESPACE DRYS END BACKUP;
ALTER TABLESPACE INDX END BACKUP;
ALTER TABLESPACE TOOLS END BACKUP;
ALTER TABLESPACE USERS END BACKUP;
ALTER TABLESPACE XDB END BACKUP;
ALTER TABLESPACE USERTS END BACKUP;

Next, we duplicate the archived redo logfiles. Archive redo logs are mandatory for
recovery of the cloned database “DB1CLONE”. To get the most recent “DB1” redo
log records, we archive the unarchived online redo logs. Before doing so, we first
check the status of the archive process and the archive log mode.

 SQL > SELECT ARCHIVER FROM V$INSTANCE;

ARCHIVE

STARTED

SQL> SELECT LOG_MODE FROM V$DATABASE;

LOG_MODE

ARCHIVELOG

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

The LOG CURRENT SQL command archives the most recent online redo logfiles. We
can now clone the volume containing the archived redo logfiles with the filer
command:

 filer> vol clone create archClone –b archivedlog
Creation of clone volume 'archClone' has completed.

 t-o
f-d

ate

In the test, we cloned about 300GB of datafiles and archived redo logfiles within a
few minutes by simply using two filer vol clone commands. This efficiency and
simplicity is a result of using NetApp Snapshot technology, which offers DBA a
robust and fast backup mechanism. In addition, the flexible volume feature allows
users to create a distinct container (volume) for a distinct dataset. This is extremely
useful for partial backup of a database. For instance, we can create database datasets
such as the Oracle binary files, datafiles, multiplexed online redo logfiles, or the
archived redo logfiles and store them in separate containers. Each dataset has its own
container, and the size of the container is based on the dataset space requirement. If
you want to back up a particular dataset—for example, the archived redo logfiles—
you need only back up the associated container. No other datasets are involved. This
method obviously saves a DBA time and energy in doing backups so that she can
spend her energy doing other important tasks.

Step (e):

We can now mount the previously cloned volumes “sysdataClone” and
“archClone”on the Oracle server, which can be the same machine as the source
database “DB1” or a different machine.

Note
Inste
redo
redo

Step

At th
“DB
issue

RCHIV
AL C

OPY

ten
ts

may
 be

 ouoracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio,
rsize=32768,wsize=32768, filer:/vol/userdataClone
/export/home/db1clone/userdata
oracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio,
rsize=32768,wsize=32768,filer:/vol/sysdataClone /export/home/db1clone/sysdata
oracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio,
rsize=32768,wsize=32768, filer:/vol/archClone /export/home/db1clone/archlog
oracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio
rsize=32768,wsize=32768, filer:/vol/log1Clone /export/home/db1clone/log1
oracle9# mount –o hard,intr,suid,vers=3,proto=tcp,llock,forcedirectio
rsize=32768,wsize=32768, filer:/vol/log2Clone /export/home/db1clone/log2
A

Con
 that we did not duplicate the online redo log files of the production “DB1”.
ad, we created new volumes “log1Clone” and “log1Clone” to store the online
 logfiles for the clone. In fact, it is advised that you do not duplicate the online
 logfiles and control files since they may corrupt your clone if not used carefully.

 (f):

is point, we are done with the file backups and are ready to recover the clone
1CLONE”. First, we recreate the clone’s control files. On the production server,
 this SQL command:

SQL> alter database backup controlfile to trace

Database altered.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

This command generates a trace file to be written to wherever the production “DB1”
initialization parameter USER_DUMP_DEST is pointing. In our case, it is in
$ORACLE_HOME/DB1/admin/udump. However, this trace file is somewhat messy and
needs to be reshaped. Here is the reshaped trace file in the form of an SQL script
controlClone.sql.

-- controlClone.sql --
connect / as sysdba
STARTUP NOMOUNT
pfile=/export/home/oracle9/clonebase/db1clone/admin/pfile/initDB1CLONE.ora
CREATE CONTROLFILE SET DATABASE "DB1CLONE" RESETLOGS NOARCHIVELOG
-- SET STANDBY TO MAXIMIZE PERFORMANCE
 MAXLOGFILES 5
 MAXLOGMEMBERS 3
 MAXDATAFILES 100
 MAXINSTANCES 1
 MAXLOGHISTORY 907
LOGFILE
 GROUP 1 (
 '/export/home/db1clone/log1/redo01.log'
) SIZE 100M,
 GROUP 2 (
 '/export/home/db1clone/log2/redo02.log'
) SIZE 100M
-- STANDBY LOGFILE
DATAFILE
 '/export/home/db1clone/sys/system01.dbf',
 '/export/home/db1clone/sys/undotbs01.dbf',
 '/export/home/db1clone/sys/undotbs02.dbf',
 '/export/home/db1clone/sys/undotabs03.dbf',
 '/export/home/db1clone/sys/indx01.dbf',
 '/export/home/db1clone/sys/tools01.dbf',
 '/export/home/db1clone/users/users01.dbf',
 '/export/home/db1clone/users/users02.dbf',
 '/export/home/db1clone/users/users03.dbf',
 '/export/home/db1clone/users/users04.dbf',
 '/export/home/db1clone/users/users05.dbf',
 '/export/home/db1clone/users/users06.dbf',
 '/export/home/db1clone/users/users07.dbf',
 '/export/home/db1clone/users/users08.dbf',
 '/export/home/db1clone/users/users09.dbf',
 '/export/home/db1clone/users/users10.dbf'
CHARACTER SET WE8ISO8859P1;

Execute controlClone.sql in the clone’s instance. This will create new control
files for the clone. The files are stored on the directory specified by the clone’s
initialization parameter control_files.

Step

In S
data
keep
whic
on th

The
clon
there
of th

Step

Now
SQL> @controlClone.sql
Connected to an idle instance.

ORACLE instance started.

Total System Global Area 135352820 bytes
Fixed Size 455156 bytes
Variable Size 109051904 bytes
Database Buffers 25165824 bytes
Redo Buffers 679936 bytes

Control file created.
ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

 (g):

tep (e), we archived the most recent online redo logfiles of the production
base “DB1”. However, traffic to the database is still continuing. Users’ records
 filling up the active online redo logfiles. Therefore, it is a good idea to check
h online redo logfiles have not been archived. Use the following SQL command
e DB1 instance to achieve that:

SQL> select a.group# "GROUP", a.member, b.status
"STATUS", b.archived from v$logfile a, v$log b where
a.group#=b.group# and b.archived='NO';
SQL> /

 GROUP

MEMBER

STATUS ARC
---------------- ---
 3
/export/home/STB1/log_1/redo03a.log
CURRENT NO

 3
/export/home/STB1/log_2/redo03b.log
CURRENT NO

files redo03a.log and redo03b.log have not been archived. Copy them to the
ed database “DB1CLONE” archive logs directory for later use. In addition, if
 is any new archived logfile generated after the snapshot was created as a result
e volume clone (Step d), copy it to the archived logs directory as well.

 (h)

 recover the clone “DB1CLONE”. In the clone instance, issue this command:

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

SQL> recover database using backup controlfile

This command will ask you to enter the archived log file names one by one for
recovery. You can select the AUTO option. When the archived logs are done, choose
the filename option and enter the previously copied files redo03a.log and
redo3b.log. The following message indicates the step:

 Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

/export/home/STB1/clone/archlog/redo03b.log
Log applied.
Media recovery complete.

Now that the recovery process for the clone “DB1CLONE” is complete, open it with
the resetlogs option:

 sql> alter database open resetlogs;

Database altered.

The clone “DB1CLONE” is now ready for use. It is recommended that you back up
the clone immediately since the archived redo logfiles are now reset. They cannot be
used again to recreate the clone.

The above database cloning procedures are shown step by step for clarification. In
general, all the steps can be automated in a single script.

5.2 Partial Database Clone with a Hot Backup

The previous section describes a way to clone an entire database. However, DBA
may sometimes want to clone just a single user tablespace from production for
maintenance. This section describes how the task is performed using the NetApp filer
flexible-volume clone feature.

As an example, our task is to duplicate the production database “DB1” tablespace
“USERS” stored on the filer volume “dbuserdata”. Here are the steps:

(a) Issue this SQL command in the DB1 instance:

SQL> alter tablespace users begin backup;

Tablespace altered.

(b) Make a clone of the production volume “dbuserdata”, which is 40GB in size, and
name the cloned volume “userClone”. The cloning process usually takes about two to
four minutes depending on filer traffic. This is the only step you need to do on the
filer:

(c) End th

(d) Now t
origin

5.3 Full

The previ
which the
activity is

From the
backup. T
Therefore
are still va
BACKUP an

In general
using a ho
highly rec
filer> vol clone create userClone –b dbuserdata

Creation of clone volume 'archClone' has completed.
ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

e backup process:

SQL> alter tablespace users end backup;

Tablespace altered.

he cloned volume can be mounted onto the Oracle server to replace the
al. After mounting, perform a media recovery on the cloned tablespace:

SQL> recover tablespace users;
SQL> alter tablespace users online;

Tablespace altered.

Database Clone with a Cold Backup

ous sections described cloning a production database using a hot backup, in
 database is open. In a cold backup, the database is shut down and no
 in progress, so the database is in a consistent state.

filer point of view, there is no difference between a hot backup and a cold
he filer clones only the flexible volumes that compose the database.
, the steps to create a cloned database discussed in Sec. 5.1 for a hot backup
lid for a cold backup, except that those SQL commands with BEGIN
d END BACKUP are no longer necessary.

, cloning database using a cold backup is faster and more consistent than
t backup. Therefore, if possible, cloning database using a cold backup is
ommended.

5.4 Partial Database Clone with a Cold Backup

To duplicate a volume containing multiple tablespaces and datafiles on the filer, use
the following filer command:

filer> vol clone create userdataClone – b dbuserdata

After creating the cloned volume “userdataClone”, you can mount it to the Oracle
server at the same mount point of the original volume “dbuserdata”. Then, start up the
database. No difference should be seen between the cloned and the original volumes.

5.5

It is
requ
Ther
and
logf

ate
Oracle9> mount filer:/vol/userdataClone /export/home/DB1/user_data
Oracle9> sqlplus “sys/passwd as sysdba”
SQL> startup pfile=/export/home/OraHome1/admin/DB1/pfile/initDB1.ora;
ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

Recommendations for Cloning

important to note that cloning a database from production on the same filer
ires prudent procedures. Carelessness may result in corrupting the production.
efore, it is recommended that, if possible, the clone be placed on a different host
named with different paths for system files, control files, datafiles, and redo
iles from production.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

6. Cloning Database in a SAN Environment Using RMAN

NetApp technical reports related to LUN cloning and backup/recovery of Oracle9i
database using a NetApp filer in SAN environment were published in Refs [6,7]. This
paper focuses on database cloning using the NetApp flexible-volume cloning feature
and RMAN.

6.1 Creating Aggregates, Flexible Volumes, and LUNs

First create aggregates and flexible volumes on the filer. The steps are similar to those
described in Section 4.1.

filer> aggr create aggr1 30
filer> aggr create aggr2 13
filer> vol create userdata aggr1 500g
filer> vol create archivedlog aggr1 300g
filer> vol create log1 aggr2 50g
filer> vol create log2 aggr2 50g
filer> vol create sysdata aggr2 100g

Then create LUNs on the flexible volumes to hold the Oracle user datafiles, system
datafiles, archived redo logfiles, and the online redo logfiles. In this test, a single
LUN is created to hold multiple files.

filer> lun create –s 200g –t solaris /vol/userdata/u_data
filer> lun create –s 200g –t solaris /vol/archivedlog/arch
filer> lun crate –s 60g –t solaris /vol/sysdata/s_data
filer> lun create –s 25g –t solaris /vol/log/log_1
filer> lun create –s 25g –t solaris /vl/log/log_2

After the LUNs are created, map them to the Oracle server (initiator group).

 filer> lun map /vol/userdata/u_data oracle9 0

filer> lun map /vol/sysdata/s_data oracle9 1
filer> lun map /vol/log/log_1 oracle9 2
filer> lun map /vol/log/log_2 oracle9 3
filer> lun map /vol/archivedlog/arch oracle9 4

Now that LUNs have been created and mapped to the Oracle server “oracle9”, we can
configure the server to utilize these resources. The tasks to configure the server—
modifying the /kernel/drv/sd.conf for new LUN mappings and creating new
partition tables—are well documented in Ref. [5] and will not be discussed here.

On the Oracle server, a new raw disk partition will be created for each LUN mapped.
Next, create a file system on each partition by executing the following shell script:

Add
auto

Afte
file

6.2

The
be a
 #!/usr/bin/sh
echo y | newfs /dev/rdsk/c5t0d0s6
echo y | newfs /dev/rdsk/c5t0d1s6
echo y | newfs /dev/rdsk/c5t0d2s6
echo y | newfs /dev/rdsk/c5t0d3s6
echo y | newfs /dev/rdsk/c5t0d4s6
 the following entries to the Oracle server system file /etc/vftab to enable
matic remount at host reboot.
 t-o
f-d

ate

/dev/dsk/c5t0d0s6 /dev/rdsk/c5t0d0s6/ /export/home/lun/userdata
ufs 2 yes forcedirectio,onerror=lock
/dev/dsk/c5t0d1s6 /dev/rdsk/c5t0d1s6//export/home/lun/sysdata
ufs 2 yes forcedirectio,onerror=lock

k

/dev/dsk/c5t0d2s6 /dev/rdsk/c5t0d2s6/ /export/home/lun/log1 ufs
2 yes forcedirectio,onerror=loc
/dev/dsk/c5t0d3s6 /dev/rdsk/c5t0d3s6/ /export/home/lun/log2 ufs
2 yes forcedirectio,onerror=lock
/dev/dsk/c5t0d4s6 /dev/rdsk/c5t0d4s6/ /export/home/lun/archlog
ufs 2 yes forcedirectio,onerror=lock
IV
AL C

OPY

 m
ay

 be
 ou

r the file systems have been created for the LUNs, mount them and change the
ownership.

ARCH

Con
ten

ts
oracle9> mount /export/home/lun/userdata
oracle9> mount /export/home/lun/sysdata
oracle9> mount /export/home/lun/log1
oracle9> mount /export/home/lun/log2
oracle9> mount /export/home/lun/archlog
oracle9> chown –R oracle:dba /export/home/lun/userdata
oracle9> chown –R oracle:dba /export/home/lun/sysdata
oracle9> chown –R oracle:dba /export/home/lun/log1
oracle9> chown –R oracle:dba /export/home/lun/log2
oracle9> chown –R oracle:dba /export/home/lun/archlog
Creating Production Database on Filer LUNs

procedures to create a production database “DB1” described in Section 4.2 can
pplied here. The mount points created for the filer LUNs discussed in section 6.1

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

are used to hold the database user datafiles, system datafiles, online redo logfiles, and
archived redo logfiles.

After the production database has been created, we insert data in it by generating
transactions using TPCC and STB tools, similar to those described in section 4.3.

6.3 Procedures for Cloning a Database in an FCP Environment

We are ready to clone the production database created previously. Here are the steps.

Step (a):

On the filer, clone the flexible volumes that comprise the production datafiles and
redo archived logfiles. Make sure that appropriate procedures have been performed
for a hot backup. Refer to Section 5.1 for details on cloning from hot backups. For
cloning from cold backups, simply shut down the database instance and then, as good
practice, perform the UNIX command sync to flush any file system buffering:

filer> vol clone create userdataCLONE -b userdata
filer> vol clone create sysdataCLONE -b sysdata
filer> vol clone create archlogCLONE -b archlog

Step (b):

The filer vol clone operations in the previous step not only create cloned volumes
but also create cloned LUNs that the volume contains, as indicated below:

filer> lun show
/vol/userdata/u_data 100g (107374182400) (r/w, online, mapped)
/vol/sysdata/s_data 60g (64424509440) (r/w, online, mapped)
/vol/archlog/arch 200g (214748364800) (r/w, online, mapped)
/vol/log1/log1 25g (26843545600) (r/w, online, mapped)
/vol/log2/log2 25g (26843545600) (r/w, online, mapped)
/vol/sysdataCLONE/s_data 60g (64424509440) (r/w, offline, mapped)
/vol/userdataCLONE/u_data 100g (107374182400) (r/w, offline, mapped)
/vol/archlogCLONE/arch 200g (214748364800) (r/w, offline, mapped)
/vol/log1CLONE/log1 25g (26843545600) (r/w, offline, mapped)
/vol/log2CLONE/log2 25g (26843545600) (r/w, offline, mapped)

Notice that the cloned LUNs are created offline and mapped to the same igroup with
identical raw device IDs as the original LUNs. We need to reassign a new device ID

to each cloned LUN and put it online. In the following example, we unmap each
cloned LUN from the igroup “oracle9” and then map it again with a new device ID.

St

On
cre

No

S

filer> lun unmap /vol/userdataCLONE/u_data oracle9
filer> lun map /vol/userdataCLONE/u_data oracle9 5
filer> lun online /vol/userdataCLONE/u_data
filer> lun unmap /vol/sysdataCLONE/s_data oracle9
filer> lun map /vol/sysdataCLONE/s_data oracle9 6
filer> lun online /vol/sysdataCLONE/s_data
filer> lun unmap /vol/log1CLONE/log1 oracle9
filer> lun map /vol/log1CLONE/log1 oracle9 7
filer> lun online /vol/log1CLONE/log1
filer> lun unmap /vol/log2CLONE/log2 oracle9
filer> lun map /vol/log2CLONE/log2 oracle9 8
filer> lun online /vol/log2CLONE/log2
filer> lun unmap /vol/archlogCLONE/arch oracle9
filer> lun map /vol/archlogCLONE/arch oracle9 9
filer> lun online /vol/archlogCLONE/arch
PY
ou

t-o
f-d

ate
ep (c):

 the Oracle server “oracle9”, we should be able to see that a new disk device is
ated for each cloned LUN:
ARCHIV
AL C

O

Con
ten

ts
may

 be

oracle9.lab.netapp.com:r sanlun lun show
 filer: lun-pathname device filename adapter lun size
lun state
filer:/vol/userdata/u_data /dev/rdsk/c5t0d0s2 lpfc0 100.0g (107374181888)
GOOD
filer:/vol/sysdata/s_data /dev/rdsk/c5t0d1s2 lpfc0 60.0g (64424508928)
GOOD
filer: /vol/log1/log1 /dev/rdsk/c5t0d2s2 lpfc0 25.0g (26843545088)
GOOD
filer: /vol/log2/log2 /dev/rdsk/c5t0d3s2 lpfc0 25.0g (26843545088)
GOOD
filer:/vol/archlog/arch /dev/rdsk/c5t0d4s2 lpfc0 200.0g (214748364288)
GOOD
filer:/vol/userdataCLONE/u_data /dev/rdsk/c5t0d5s2 lpfc0 100.0g (107374181888)
GOOD
filer:/vol/sysdataCLONE/s_data /dev/rdsk/c5t0d6s2 lpfc0 60.0g (64424508928)
GOOD
filer:/vol/log1CLONE/log1 /dev/rdsk/c5t0d7s2 lpfc0 25.0g (26843545088)
GOOD
filer:/vol/log2CLONE/log2 /dev/rdsk/c5t0d8s2 lpfc0 25.0g (26843545088)
GOOD
filer:/vol/archlogCLONE/arch /dev/rdsk/c5t0d9s2 lpfc0 200.0g (214748364288)
GOOD
w we mount the cloned LUNs, which hold the cloned database, on the server:

tep (d):
oracle9# mount /dev/dsk/c5t0d5s6/ /export/home/lun/STB1Clone/userdata
oracle9# mount /dev/dsk/c5t0d6s6/ /export/home/lun/STB1Clone/sysdata/
oracle9# mount /dev/dsk/c5t0d7s6/ /export/home/lun/STB1Clone/log1
oracle9# mount /dev/dsk/c5t0d8s6/ /export/home/lun/STB1Clone/log2
oracle9# mount /dev/dsk/c5t0d9s6/ /export/home/lun/STB1Clone/archlog/

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

Then on the server, create the appropriate directories for Oracle system files, the
initialization file, and control files for the clone, similar to those described in Section
5, Steps (b), (c) and (f). If you are running the clone and production on the same
machine, make sure that the two database names, redo logfile, and control file
locations are different.

Step (e):

After the clone database’s control files and initialization file have been created, we
can use RMAN to recover the database from the clone archived redo logfiles:

oracle9> rman target sys/passwd@cloneDB

Recovery Manager: Release 9.2.0.1.0 - Production

Copyright (c) 1995, 2002, Oracle Corporation. All rights reserved.

connected to target database (not started)

RMAN> startup mount

Oracle instance started
database mounted

Total System Global Area 135352820 bytes

Fixed Size 455156 bytes
Variable Size 109051904 bytes
Database Buffers 25165824 bytes
Redo Buffers 679936 bytes

RMAN> recover database until sequence 6 thread 1;

Starting recover at 04-NOV-04
using target database controlfile instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=11 devtype=DISK

starting media recovery
media recovery complete

Finished recover at 04-NOV-04

RMAN> alter database open resetlogs;

database opened

At this stage, the multiplexed online redo logfiles have been created at the locations
specified in the control files. Note that in the RMAN command recover database
until, sequence 6 is used in the present test. You should check this sequence
number in your archived redo logfile directory before using it.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

Step (f):

Now the clone database has been created. It is important to note that the above
duplication process will result in the production and clone having an identical DBID.
Thus, changing the clone’s DBID is recommended before using it, especially if it is
running on the same host as the production and the RMAN recovery catalog is used
for backup and recovery. The DBNEWID utility provided by Oracle is meant for this
purpose and gives the clone a new DBID.

Note that RMAN also provides the command duplicate to clone a database.
Basically the duplicate command performs the following tasks: (1) determining the
nature and locations of database backups; (2) allocating an auxiliary channel for the
auxiliary instance; (3) restoring the datafiles and archived redo logs to the auxiliary
instance; (4) building a new auxiliary control file; (5) performing an incomplete
recovery for the clone; (6) resetting the DBID for the clone; and (7) opening the clone
with resetlogs. However, by using the NetApp flexible-volume cloning feature as
described above you can avoid the lengthy backup and restore processes that the
RMAN command duplicate requires. This significantly saves a DBA’s time and
energy.

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

7. Verifications of the Cloned Database

This section describes the methods used to validate the cloned database. The methods
include (a) verifying the data generated by TPCC and STB, (b) using the Oracle tool
db_verify to check the structural integrity of the database, and (c) using the NetApp
filer commands WAFL_check and aggr wafliron to check volume integrity.

7.1 STB and TPCC Verifications

The user data in the database are essentially generated by the STB and TPCC tools, as
described in Section 4.3. STB generates known data in the production database
“DB1”. These data are then duplicated in the cloned database. To validate the cloned
data, we retrieve the known data from the clone and compare them with the original
to make sure they match. Similarly, TPCC creates data for various tables, indexes,
and procedures, etc. The same TPCC transactions are run on the clone to make sure
that the data objects are intact.

7.2 Verifications with NetApp WAFL_check, aggr_wafliron, and Oracle
db_verify

To check the data integrity of the NetApp filer aggregates and volumes that comprise
the cloned database, NetApp filer commands “WAFL_check” and “aggr_wafliron”
are used. The former command is run at filer reboot, while the latter is run when the
aggregate is online.

 filer> aggr wafliron start aggr1

Oracle also provides the db_verify utility to check the structural integrity of the
database files for corruption. The following Perl script performs the db_verify
operations on all data files with names ended with .dbf in a directory. It also prints
the db–verify results to a file.

.
Th

te

#!/usr/bin/perl

#File:dbverify.pl
#This script is used to verify Oracle database datafiles
#Usage: perl db_verify.pl --dir=directory_of_the_datafiles

use strict;
use Getopt::Long;
use IO::Handle;
my $dir;
my $status;
GetOptions ('dir=s' => \$dir,);
chomp ($dir);
#Create an output file
open (IFP, ">db_verify.txt") or die "Can't open file:$!\n";
IFP->autoflush(1);
my @dbf_list = `ls -alt $dir`;
Do db_verify on all the DB data files and print the results
for (my $i =0; $i < @dbf_list; $i++) {
 if ($dbf_list[$i] =~ /\s+(\S+\.dbf)/) {
 print IFP "\n\nVerify $1\n";
 $status = `dbv file=$dir/$1 blocksize=8192 2>&1`;
 print IFP "$status";
 }
}
close (IFP);
OPY
e o

ut-
of-

da

e following shows the db–verify output of a single .dbf file.
ARCHIV
AL C

Con
ten

ts
may

 bVerify users01.dbf

DBVERIFY: Release 9.2.0.1.0 - Production on Fri Aug 27 10:56:53 2004

Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

DBVERIFY - Verification starting : FILE =
/export/home/STB1/clone/users/users01.dbf

DBVERIFY - Verification complete

Total Pages Examined : 25600
Total Pages Processed (Data) : 314
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 126
Total Pages Failing (Index): 0
Total Pages Processed (Other): 20
Total Pages Processed (Seg) : 0
Total Pages Failing (Seg) : 0
Total Pages Empty : 25140
Total Pages Marked Corrupt : 0

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

8. Conclusion

The NetApp flexible-volume cloning feature provides DBA a fast and robust way to
clone a production database. The clone feature and its associated Snapshot technology
offers time and space efficiency in database backup and recovery operations. The
flexible volume feature allows users to create a distinct container for a distinct
dataset. This greatly simplifies backup and cloning of a partial database. The
procedures described in this paper provide a way to meet the cloning objective.

9. Caveats

The tests described in this paper were conducted in the System Test Lab. Cloning of a
Oracle9i database was done on Sun Solaris 8 and a filer F880 platform loaded with
the Anchorsteam release. NetApp has not tested this configuration with all the
combinations of hardware and software options available. There may be significant
differences in your configuration that will change the procedures necessary to
accomplish the objectives outlined in this paper. If you find that any of these
procedures do not work in your environment, please contact the author immediately.

10. Technical Reference:

[1] Jerry Liu, Jeff Browning and Tim Moore, Oracle8 for UNIX: Providing Disaster
Recovery with NetApp SnapMirror Technology, NetApp TR 3057, 8/2000.
[2] Customer Simulation Lab managed by System Test Team. Contact: Francis Hong.
[3] Benchmark Factory for Oracle, Quest Corp.: www.quest.com/bmfo.
[4] PL/SQL codes largely developed by Shou-Wen Chen of the System Test Team.
[5] Brian Casper, Oracle9i for UNIX: Integrating with a NetApp Filer in a SAN
Environment, NetApp TR 3207, 12/2002.
[6] Richard Jooss and Brian Casper, Oracle9i for UNIX: Backup and Recovery Using a
NetApp Filer in a SAN Environment, NetApp TR 3210, 04/2004.
[7] Toby Creek, Application for Writeable LUNs and LUN Cloning in Oracle
 Environments, NetApp TR 3266, 6/2003.
[8] Bruce Clarke and Sankar Bose, Using Oracle with Multiprotocol Filer,
 NetApp TR 3203.
[9] Oracle Simulator, User’s Guide, Release 6.0, 1/2004
[10] Jeff Browing, Oracle8 for UNIX: Integration with a NetApp Filer, NetApp TR
 3047.

 Revision History

Date Name Description

http://www.quest.com/bmfo

ARCHIV
AL C

OPY

Con
ten

ts
may

 be
 ou

t-o
f-d

ate

1/2005 Sunny
Ng Creation

5/25/2005 Mel
Shum

Updated Aggregates to conform to best
practices

© 2005 Network Appliance, Inc. All rights reserved. Specifications subject to change without notice. NetApp, NetCache, and the Network Appliance logo are
registered trademarks and Network Appliance, DataFabric, and The evolution of storage are trademarks of Network Appliance, Inc., in the U.S. and other countries.
Oracle is a registered trademark of Oracle Corporation. All other brands or products are trademarks or registered trademarks of their respective holders and should be
treated as such.

	Revision History

